Introduction

Proteomic studies that examine protein and PTM abundance often employ multi-dimensional techniques that can provide a wide dynamic range of multiplexed assays within a single biological specimen. The multiplexing of these methodologies can offer the ability of conducting target and non-target discovery programs for drug development or biomarker screening due to streamlined workflows, data management, and increased throughput compared to sequentially targeted approaches.

Methods

Cell Culture and Away: BEKs (EBV) and BMSCs were passed in RPMI media with 10% FBS and penicillin/streptomycin. BMSCs were passaged to sub-confluency (~90% confluence) and split at a ratio of 1:3. Live cell numbers were counted to determine cell density. After cell density determination, cells were seeded into 12-well plates (2 × 10^6) in RPMI with 10% FBS and 1% penicillin/streptomycin. The next day, the media was changed to RPMI with 10% FBS, 1% penicillin/streptomycin, and the cells were cultured until 80% confluence.

Results

Figure 1. Single bead and RPLS assay. MALDI-TOF MS peptide (30 µM) was detected using the Bead-assoxted Mass Spectrometry (BAMS) bead reagent and separated by MALDI-TOF MS. The ability to multiplex multiple protein targets onto a single MALDI plate and peptide concentration data from the same analyte by assessing MS/MS fragment ions that are phosphorylated, acetylated, or glycosylated is shown for BAMS assay. (A) Bead-assisted MALDI-TOF MS signal for a single bead. (B) MALDI-TOF MS signal for a single bead. (C) MALDI-TOF MS signal for a single bead. (D) MALDI-TOF MS signal for a single bead.

Discussion

The ability to multiplex multiple protein targets onto a single MALDI plate and peptide concentration data from the same analyte by assessing MS/MS fragment ions that are phosphorylated, acetylated, or glycosylated is shown for BAMS assay. (A) Bead-assisted MALDI-TOF MS signal for a single bead. (B) MALDI-TOF MS signal for a single bead. (C) MALDI-TOF MS signal for a single bead. (D) MALDI-TOF MS signal for a single bead.

Figure 2. Multiplex peptide-protein quantitation exemplified. Multiple peptide-protein quantitation exemplified for BAMS assay. The ability to multiplex multiple protein targets onto a single MALDI plate and peptide concentration data from the same analyte by assessing MS/MS fragment ions that are phosphorylated, acetylated, or glycosylated is shown for BAMS assay. (A) Bead-assisted MALDI-TOF MS signal for a single bead. (B) MALDI-TOF MS signal for a single bead. (C) MALDI-TOF MS signal for a single bead. (D) MALDI-TOF MS signal for a single bead.

Figure 3. Multiplex peptide-protein quantitation exemplified. Multiple peptide-protein quantitation exemplified for BAMS assay. The ability to multiplex multiple protein targets onto a single MALDI plate and peptide concentration data from the same analyte by assessing MS/MS fragment ions that are phosphorylated, acetylated, or glycosylated is shown for BAMS assay. (A) Bead-assisted MALDI-TOF MS signal for a single bead. (B) MALDI-TOF MS signal for a single bead. (C) MALDI-TOF MS signal for a single bead. (D) MALDI-TOF MS signal for a single bead.

Figure 4. Multiplex peptide-protein quantitation exemplified. Multiple peptide-protein quantitation exemplified for BAMS assay. The ability to multiplex multiple protein targets onto a single MALDI plate and peptide concentration data from the same analyte by assessing MS/MS fragment ions that are phosphorylated, acetylated, or glycosylated is shown for BAMS assay. (A) Bead-assisted MALDI-TOF MS signal for a single bead. (B) MALDI-TOF MS signal for a single bead. (C) MALDI-TOF MS signal for a single bead. (D) MALDI-TOF MS signal for a single bead.

Figure 5. Multiplex peptide-protein quantitation exemplified. Multiple peptide-protein quantitation exemplified for BAMS assay. The ability to multiplex multiple protein targets onto a single MALDI plate and peptide concentration data from the same analyte by assessing MS/MS fragment ions that are phosphorylated, acetylated, or glycosylated is shown for BAMS assay. (A) Bead-assisted MALDI-TOF MS signal for a single bead. (B) MALDI-TOF MS signal for a single bead. (C) MALDI-TOF MS signal for a single bead. (D) MALDI-TOF MS signal for a single bead.

Acknowledgments

We thank the following institutions for technical support or expertise:

- **SimulTOF** (Lyon, France) for their technical and scientific support.
- **Bead assisted Mass Spectrometry (BAMS)** (Sunnyvale, CA) for product support.
- **MALDI MS** (Dover, DE) for product support.
- **GPI** (Berkeley, CA) for product support.
- **GFS** (Milford, CT) for product support.
- **ABH** (Aliso Viejo, CA) for product support.

References

-MP Stokes et al., Mol Cell Proteomics, 2012
-US patent application 15/487,098
-US patent 9,618,520

Contact Information

Jeffrey C. Silva, Adeptrix Corporation, Marlborough, MA 01752 (617) 479-7964, jsilva@adeptrix.com, www.adeptrix.com